How Weather Influenced West Nile Virus in the US (2001-2005)
How Weather Influenced West Nile Virus in the US (2001-2005)
Background: The effects of weather on West Nile virus (WNV) mosquito populations in the United States have been widely reported, but few studies assess their overall impact on transmission to humans.
Objectives: We investigated meteorologic conditions associated with reported human WNV cases in the United States.
Methods: We conducted a case–crossover study to assess 16,298 human WNV cases reported to the Centers for Disease Control and Prevention from 2001 to 2005. The primary outcome measures were the incidence rate ratio of disease occurrence associated with mean weekly maximum temperature, cumulative weekly temperature, mean weekly dew point temperature, cumulative weekly precipitation, and the presence of ≥ 1 day of heavy rainfall (≥ 50 mm) during the month prior to symptom onset.
Results: Increasing weekly maximum temperature and weekly cumulative temperature were similarly and significantly associated with a 35–83% higher incidence of reported WNV infection over the next month. An increase in mean weekly dew point temperature was significantly associated with a 9–38% higher incidence over the subsequent 3 weeks. The presence of at least 1 day of heavy rainfall within a week was associated with a 29–66% higher incidence during the same week and over the subsequent 2 weeks. A 20-mm increase in cumulative weekly precipitation was significantly associated with a 4–8% increase in incidence of reported WNV infection over the subsequent 2 weeks.
Conclusions: Warmer temperatures, elevated humidity, and heavy precipitation increased the rate of human WNV infection in the United States independent of season and each others' effects.
West Nile virus (WNV) is a globally distributed, mosquito-borne flavivirus that caused 3,510 known cases and 109 deaths in the United States in 2007 [Centers for Disease Control and Prevention (CDC) 2007]. The WNV enzootic cycle relies on the vector's (mosquitoes) interplay with the reservoir (wild birds) and dead-end hosts such as humans, who develop clinical disease after a usual incubation period of 2–6 days (Campbell et al. 2002; Sampathkumar 2003). After its North American debut in New York City in 1999, WNV moved across North America to California, reaching Canada and Central America by 2002 (Hayes and Gubler 2006). The virus' rapid spread after a drought and during some of the warmest recorded years led to speculation that global climate change aided dispersion (Epstein 2005; National Research Council 2001) and suggests that understanding how weather affects WNV is critical to control efforts.
Like malaria in tropical Africa (Rogers and Randolph 2000; Teklehaimanot et al. 2004) and St. Louis encephalitis in the United States (Defilippo and Epstein 2001; Monath and Tsai 1987; Shaman et al. 2005), increased temperatures influence North American WNV distribution. Above-average temperatures correlated with WNV's spread into western states and with county-level mosquito infectivity (Reisen et al. 2006), high 2002 northeastern metropolitan case loads (El Adlouni et al. 2007), and the transfer of virus from a secondary to a primary bridge vector (Kunkel et al. 2006). Higher temperatures also have important effects on mosquitoes that carry WNV, increasing viral load and shortening the extrinsic incubation period (EIP) under laboratory conditions, and, like humidity, accelerating blood-feeding and reproductive activity in the field (Dohm et al. 2002; Reisen et al. 2006; Shaman and Day 2007).
In contrast, the effects of precipitation on WNV and other U.S. mosquito-borne disease transmission remain controversial (Degroote et al. 2008; Shaman and Day 2007). Broad regional trends suggest that prior drought contributed to the initial U.S. WNV outbreak (Degroote et al 2008; Hubalek 2000), but subsequent research has been inconsistent, showing both positive and negative associations with rainfall and WNV and similar mosquito-borne diseases (Hubalek 2000; Landesman et al. 2007; Shaman et al. 2003). WNV vector populations have increased (Landesman et al. 2007) and decreased (Degaetano 2004) after elevated precipitation, depending on location and calendar month.
The Intergovernmental Panel on Climate Change (IPCC 2007) projects that climatic and weather conditions in North America in the coming decades are likely to include warmer temperatures, shorter winters, increased proportion of precipitation falling as rain rather than snow, and increased frequency of heavy rainfalls and other extreme weather events. If temperature and precipitation are influential in determining WNV infection risk, such changes would be likely to increase the burden of this disease in coming decades. Associations between meteorologic variables and risk of WNV case occurrence have not been systematically evaluated across geographically diverse regions. Accordingly, we studied the effects of ambient temperature, humidity, and precipitation on the incidence of WNV infection among 16,298 cases reported to the CDC between 2001 and 2005 in 17 U.S. states.
Abstract and Introduction
Abstract
Background: The effects of weather on West Nile virus (WNV) mosquito populations in the United States have been widely reported, but few studies assess their overall impact on transmission to humans.
Objectives: We investigated meteorologic conditions associated with reported human WNV cases in the United States.
Methods: We conducted a case–crossover study to assess 16,298 human WNV cases reported to the Centers for Disease Control and Prevention from 2001 to 2005. The primary outcome measures were the incidence rate ratio of disease occurrence associated with mean weekly maximum temperature, cumulative weekly temperature, mean weekly dew point temperature, cumulative weekly precipitation, and the presence of ≥ 1 day of heavy rainfall (≥ 50 mm) during the month prior to symptom onset.
Results: Increasing weekly maximum temperature and weekly cumulative temperature were similarly and significantly associated with a 35–83% higher incidence of reported WNV infection over the next month. An increase in mean weekly dew point temperature was significantly associated with a 9–38% higher incidence over the subsequent 3 weeks. The presence of at least 1 day of heavy rainfall within a week was associated with a 29–66% higher incidence during the same week and over the subsequent 2 weeks. A 20-mm increase in cumulative weekly precipitation was significantly associated with a 4–8% increase in incidence of reported WNV infection over the subsequent 2 weeks.
Conclusions: Warmer temperatures, elevated humidity, and heavy precipitation increased the rate of human WNV infection in the United States independent of season and each others' effects.
Introduction
West Nile virus (WNV) is a globally distributed, mosquito-borne flavivirus that caused 3,510 known cases and 109 deaths in the United States in 2007 [Centers for Disease Control and Prevention (CDC) 2007]. The WNV enzootic cycle relies on the vector's (mosquitoes) interplay with the reservoir (wild birds) and dead-end hosts such as humans, who develop clinical disease after a usual incubation period of 2–6 days (Campbell et al. 2002; Sampathkumar 2003). After its North American debut in New York City in 1999, WNV moved across North America to California, reaching Canada and Central America by 2002 (Hayes and Gubler 2006). The virus' rapid spread after a drought and during some of the warmest recorded years led to speculation that global climate change aided dispersion (Epstein 2005; National Research Council 2001) and suggests that understanding how weather affects WNV is critical to control efforts.
Like malaria in tropical Africa (Rogers and Randolph 2000; Teklehaimanot et al. 2004) and St. Louis encephalitis in the United States (Defilippo and Epstein 2001; Monath and Tsai 1987; Shaman et al. 2005), increased temperatures influence North American WNV distribution. Above-average temperatures correlated with WNV's spread into western states and with county-level mosquito infectivity (Reisen et al. 2006), high 2002 northeastern metropolitan case loads (El Adlouni et al. 2007), and the transfer of virus from a secondary to a primary bridge vector (Kunkel et al. 2006). Higher temperatures also have important effects on mosquitoes that carry WNV, increasing viral load and shortening the extrinsic incubation period (EIP) under laboratory conditions, and, like humidity, accelerating blood-feeding and reproductive activity in the field (Dohm et al. 2002; Reisen et al. 2006; Shaman and Day 2007).
In contrast, the effects of precipitation on WNV and other U.S. mosquito-borne disease transmission remain controversial (Degroote et al. 2008; Shaman and Day 2007). Broad regional trends suggest that prior drought contributed to the initial U.S. WNV outbreak (Degroote et al 2008; Hubalek 2000), but subsequent research has been inconsistent, showing both positive and negative associations with rainfall and WNV and similar mosquito-borne diseases (Hubalek 2000; Landesman et al. 2007; Shaman et al. 2003). WNV vector populations have increased (Landesman et al. 2007) and decreased (Degaetano 2004) after elevated precipitation, depending on location and calendar month.
The Intergovernmental Panel on Climate Change (IPCC 2007) projects that climatic and weather conditions in North America in the coming decades are likely to include warmer temperatures, shorter winters, increased proportion of precipitation falling as rain rather than snow, and increased frequency of heavy rainfalls and other extreme weather events. If temperature and precipitation are influential in determining WNV infection risk, such changes would be likely to increase the burden of this disease in coming decades. Associations between meteorologic variables and risk of WNV case occurrence have not been systematically evaluated across geographically diverse regions. Accordingly, we studied the effects of ambient temperature, humidity, and precipitation on the incidence of WNV infection among 16,298 cases reported to the CDC between 2001 and 2005 in 17 U.S. states.